Wind could meet many times world’s total power demand by 2030, Stanford researchers say 

Standford Graduate School of Business: If the world is to shift to clean energy, electricity generated by the wind will play a major role – and there is more than enough wind for that, according to new research from Stanford and the University of Delaware. Researchers at Stanford University’s School of Engineering and the University of Delaware developed the most sophisticated weather model available to show that not only is there plenty of wind over land and near to shore to provide half the world’s power, but there is enough to exceed the total demand by several times, even after accounting for reductions in wind speed caused by turbines. The findings were published in the Proceedings of the National Academy of Sciences (PNAS) by Mark Z. Jacobson, a professor of civil and environmental engineering at Stanford, and Cristina Archer, an associate professor of geography and physical ocean science and engineering at the University of Delaware.

High-resolution models

In their study, Jacobson and Archer adapted the three-dimensional, atmosphere-ocean-land computer model known as GATOR-GCMOM to calculate the theoretical maximum wind power potential on the planet, taking into account wind reduction by turbines. Their model assumed wind turbines could be installed anywhere and everywhere, without regard to societal, environmental, climatic or economic considerations. The new paper contradicts two earlier studies that said wind potential falls far short of the aggressive goal because each turbine steals too much wind energy from other turbines, and that turbines introduce harmful climate consequences that would negate some of the positive aspects of renewable wind energy. The new computer model provides a more sophisticated look than previously possible by separating winds in the atmosphere into hypothetical boxes stacked atop and beside one another. Each box has its own wind speed and weather. In their model, Jacobson and Archer exposed individual turbines to winds from several boxes at once, a degree of resolution earlier global models did not match. “Modeling the climate consequences of wind turbines is complex science,” said Jacobson. “This software allows that level of detail for the first time.” The researchers were able to calculate the exposure of each wind turbine in the model to winds that vary in space and time. Additionally, the model accounts for the wind that gets claimed by the turbines. It then calculates the effect of these wind speed changes on global temperatures, moisture, clouds and climate.

MORE

« back