Energy Transition – Enabling Technologies

PMEC Pacific Marine Energy Center

UNIVERSITY OF ALASKA FAIRBANKS Oregon State University

Energy Transition - Enabling Technology

- Caveats
 - Not specifically my area of expertise
 - Graphs are qualitative
 - Opinions are my own
- Concepts that are key to this discussion:
 - Variability and Predictability
 - Energy Storage
 - Use energy in another time and place from where it is created
 - Examples
 - Scale

Carbon Free Energy Sources

Predictability/Reliability

ACEP

ALASKA FAIRBANKS

PACIFIC Marine Energy Center

Renewable Energy Production - Solar

MEC C Marine Energy Center

Renewable Energy Production - Wind

Renewable Energy Production - Hydrokinetic

Renewable Energy Production - Tidal

Sprake, David, et al. "Housing estate energy storage feasibility for a 2050 scenario." 2017 Internet Technologies and Applications (ITA). IEEE, 2017.

Storage

https://electrificationstrategy.eu/faq/costs-benefits-and-distributional-impacts/hydrogen-is-the-better-technology-for-energy-storage

Recent Example – Hughes, Alaska

- Hughes Village Council (DOE grant)
- Solar + Battery (ABB, now Hitachi)
- Battery provides spinning reserve to enable diesels-off
- 21% diesel offset in May 2022
- https://www.energy.gov/indianenergy/articles/c an-solar-work-alaska-hughes-village-says-yes

Photos by Dave Messier, Tanana Chiefs Conference

Recent Example – Shungnak, Alaska

- AVEC Utility
- Solar + Battery (Blue Planet Energy)
- Video https://www.youtube.com/watch?v=_Q-VXsIwYhk

Scale – Case Study – 100% Solar Fairbanks

Scale – Case Study – 100% Solar Fairbanks

									η=62%							
Hou	Day	Hou	Air	Heating	Hourly Heat	Hourly Electric	Hourly Solar	Net	H2 Energy From	H2 Energy	H2 Storage	900,000 -				
Yea	r Year	Day	re [F]	Hour	Load [MW]	Load [MW]	Production [MW]	[MW]	Storage [MWh]	[MWh]	[MWh]	800,000 ·				
0	1	0	-35.0	100	69	164	0	-164	366	C	325,000	ً≥ 700,000 -				
1	1	1	-36.0	101	69	160	0	-160	361	C	324,639	Σ				
2	1	2	-36.0	101	69	7	0	-157	356	(324,284	- 600,000 و				
3	1	3	-36.0	101	69	1	η	=55% <mark>-156</mark>	353	(323,931	e				
4	1	4	-36.9	102	70	155	U	-15	351	0	323,580	500,000 -				
5	1	5	-36.9	102	70	155		-155	352	(323,228					
6	1	6	-38.0	103	71	159	0	-159	360	(322,868	<u>9</u> 400,000 -				<u> </u>
/	1	/	-38.0	103	/1	166	0	-166	3/3	(322,495	5 200 000				· · · · ·
8	1	8	-36.9	102	/0	1/3	0	-1/3	385	(322,109	00300,000 ·				
9	1	9	-36.9	102	/0	180	0	-180	397	(321,/12	2 200 000				
10	1	10	-36.9	102	70	184	0	-184	404	(321,308	200,000				
11	1	11	-36.9	102	/0	186	238	52	/0	49	321,287	± 100.000 .				
12	1	12	-36.0	101	69	186	265	79	69	72	321,292	100,000 -				
13	1	13	-36.0	101	69	187	205	18	69	1/	321,239	0 -				
14	1	14	-36.0	101	69	18/	96	-91	234	(321,005	0		4000	c000	2000
15	1	15	-36.0	101	69	186	0	-186	408	(320,596		2000	4000	6000	8000
														Hour of Yea	ar	

100% Solar Fairbanks

100% Solar Fairbanks

System	Nameplate Capacity	Nameplate Cost	Capital Cost
PV Array	2,288 MW	2,000 \$/kW	\$4.6B
Electrolyzer	1,645 MW	800 \$/kW	\$1.3B
Hydrogen Storage	800,800 MWh	15 \$/kWh	\$12B
Fuel Cell	189 MW	7,197 \$/kW	\$1.4B
Total:			\$19.2B

O&M projected at \$200M per year

ALASKA

- LCOE projected at \$1.20/kWh over 30 years (current fuel rate \$0.14/kWh)
- Optimum sizing is much smaller, getting to 100% is expensive

Summary

- Different carbon-free sources pose different integration problems
- Storage is required on multiple timescales
- Scale is an immense challenge (oil and gas are better at this than any other industry)
- Getting to 100% on annual basis is expensive

Questions?

Ben Loeffler Alaska Center for Energy and Power at UAF bhloeffler@alaska.edu

