
LDES - LONG DURATION ENERGY STORAGE: THIS GENERATION'S GRAND CHALLENGE

SUE BABINEC Argonne Collaborative Center for Energy Storage Science (ACCESS) Argonne National Lab sbabinec@anl.gov

SEPTEMBER 8, 2023

LDES: LONG DURATION ENERGY STORAGE

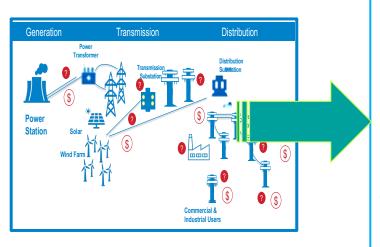
HOURS OF ENERGY DISCHARGE – "DURATION" – HAS EMERGED AS A KEY GRID METRIC

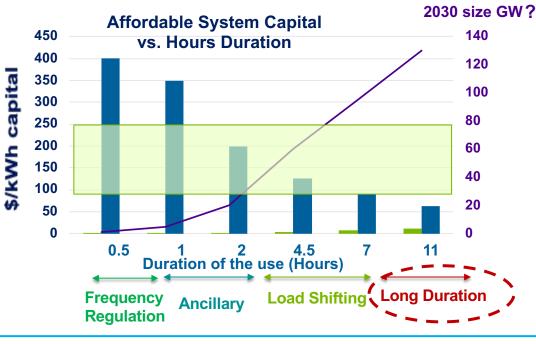
why how to emerging tech roadmap

LDES: WHY

WHY/WHAT - IT'S COMPLICATED:

Local Considerations + Economic Criteria -> Complex Situations & Decisions

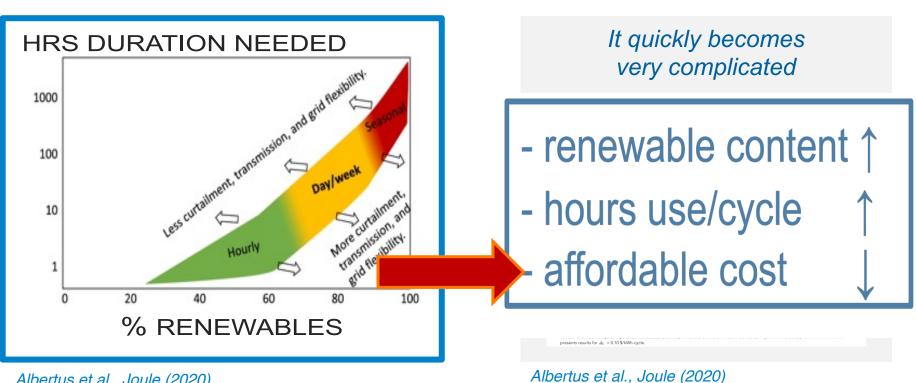

FUTURE GRID COMPLEXITY = STATIONARY ES COMPLEXITY RENEWABLE GENERATION \rightarrow DISTRIBUTED GENERATION



GENERALIZATONS: HOURS DISCHARGE

More renewables = more variability \rightarrow Increased stabilizing duration $\rightarrow \rightarrow$ less affordable cost

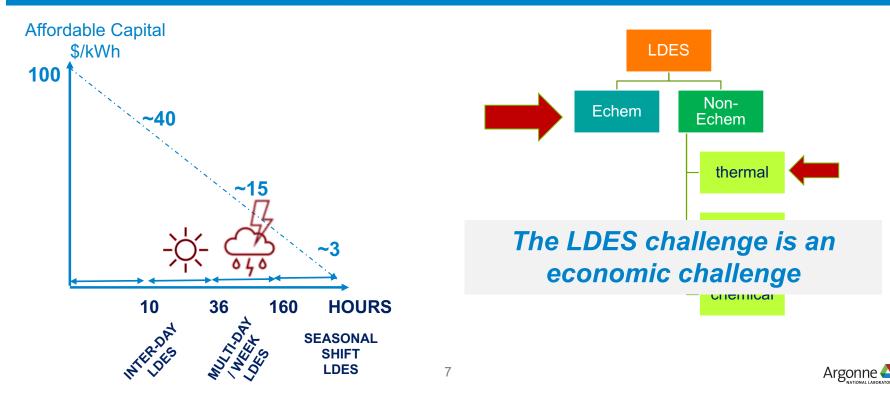
DOE defines LDES as > 10-hour Discharge



υία

LDES NEED - THIS IS ALL RELATIVELY NEW

Seminal LDES work: Albertus et. al. 2020



Albertus et al., Joule (2020)

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

NOT ONE MARKET SEGMENT NOT ONE TECHNOLOGY OPTION

No technology today can meet the targets today

DOE KNOWS THIS IS HARD: LDES EARTHSHOT

Earth Shot Metrics

Long Duration Storage Shot

Reduce storage costs by **90%***...

*from a 2020 Li-ion baseline

...in storage systems that deliver **10+** hours of duration

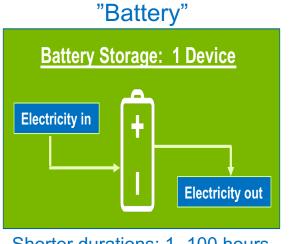
...in **1** decade

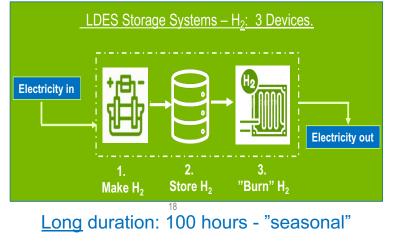
Clean power anytime, anywhere.

LCOS	0.05 cents*/kWh-Cycle
Duration	10 hours
Cost	90% reduction vs. 2020 Li-Ion
Timeframe	10 years to success

* Fully loaded system cost using power electronics & <u>available</u>/cycled energy

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

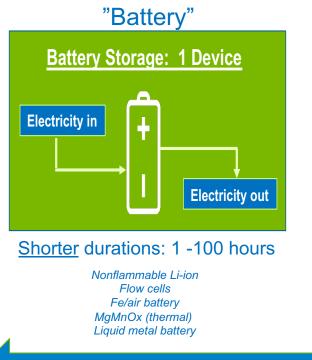

LDES: DESIGNING SOLUTIONS


ENERGY STORAGE OPTIONS: SHORT & LONG DURATION

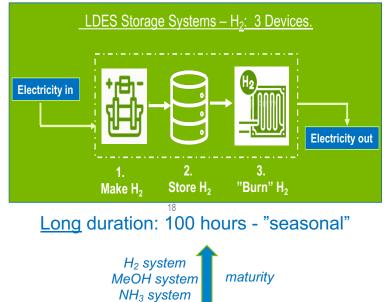
 e^{-} in $\Leftrightarrow e^{-}$ out: Two basic approaches

Shorter durations: 1 -100 hours

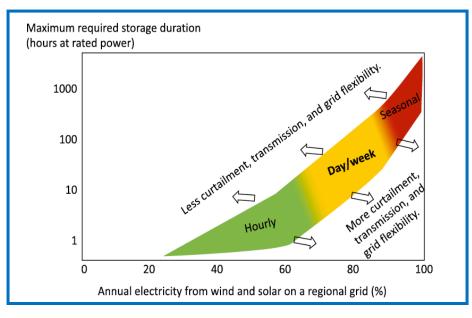
U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC "Energy Storage System""



INCREASING MATURITY with SHORTER DURATIONS


ENERGY STORAGE OPTIONS: SHORT & LONG DURATION

 e^{-} in $\Leftrightarrow e^{-}$ out: Two basic approaches


U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

"Energy Storage System""

INCREASING MATURITY with SHORTER DURATIONS

LDES: ULTIMATELY AN ECONOMIC CHALLENGE

Source: [51] P. Albertus, J. Manser, and S. Litzelman, "Long-Duration Electricity Storage Applications, Economics and Technologies," *Joule*, vol. 4,

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Affordable Hours Capital Examples (\$/kWh)* <6 <100 Li-ion 10-18 ~40 Flow Cells, Earth abundant 50 7-20 Form Energy, Earth abundant >100 3 Chemical: H2, NH3, etc.

* Paul Albertus – Joule 2020

Earth Abundant: Pb, Fe, S, Mn, S, Air, Na⁺, H⁺, K⁺

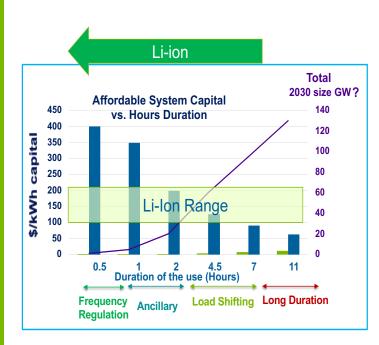
THE LDES ECONOMIC CHALLENGE

BRUTAL COST TARGETS: <<\$100/kWh <u>system</u> capex, => "NEW" CHEMISTRIES

Targets: low cost, abundant raw materials = limited materials menu, typically aqueous

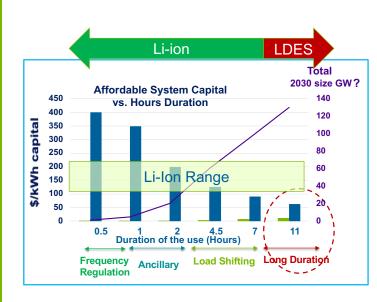
Brutal cost/performance requirements => full utilization of materials AND high cycle life

CAPEX


CYCLES

LDES: EMERGING TECH ROADMAP

LI-ION: CRITICAL TO MEET THE DEMAND IN NEXT 5+ YEARS


Li-lon Improvements for 6-8 hour durations

- **TODAY:** Iron Phosphate cathodes (LFP)
- SHORT TERM:
 - No Co/High Ni NMC cathodes
 - Low Ni/No Co NMC cathodes
 - High cycle life using AI/ML
- MEDIUM TERM:
 - Reduced flammability/better safety
 - Fe-oxide cathodes
- LONG TERM:
 - Na instead of Li
 - Fundamentally nonflammable

FLOW CELLS: >8 HOURS & ALREADY LARGE DEMOS TODAY

Today: majority of flow cell improvements are in type of chemistry/storage molecules Future: improvements are in new cells designs for higher energy density

Flow Cells for > 8-hour durations

- TODAY:
 - ESS aq. Iron/Iron
 - EOS Zn/Br₂
 - CMBlue Organics/ High ED hybrid
 - Lockheed metal chelates
- SHORT TERM:
 - Quino Energy new organic actives
- FUTURE:
 - Higher energy density actives
 - Higher energy density cell designs

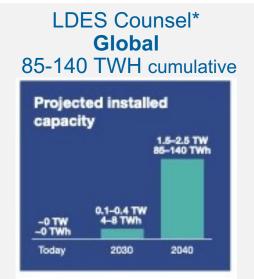
MORE OPTIONS EMERGING: >8 HOURS

CLYTEN

E Ambri

AN ELECTRIC POWER

RGY Argonne National Laboratory is a U.S. Department of Energy laborator managed by UCbicano Argonne 110


- FORM ENERGY: Metal Air battery "reversible rust"
 - > \$600 million invested
- **LYTEN:** Li-S actually making this work
 - > \$100 million invested
- **AMBRI:** Liquid metal battery that uses material density differences instead of massive manufacturing
 - In generation 3 design
 - > \$60 million
- **REDOXBLOX:** metal oxide/reduced metal chemical/thermal storage
 - A round investments, but scaling up with ARPA-E
 - **URBAN-ELECTRIC POWER:** age-old Zn/MnO2 primary battery made reversible

LDES FUTURE: EXACTLY HOW MUCH & EXACTLY WHAT KIND ARE A BIT UNCLEAR

Full US Grid Decarb: 2-6 TWh в 12 10 Storage energy [TWh] 8 6 2 Brown, Botterud,

Brown, Botteruc Joule (2020) **2020**

Cumulative capex \$1,500-3,000 US dBn **2021** 2060 US Grid -225-460 GW -\$330B Capital

THANK YOU

Sue Babinec sbabinec@anl.gov

